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A numerical method is presented for describing pore structure evolution during
chemical vapor infiltration densification and other physical problems of gas–solid
reactions involving growth of a porous solid. Our method, based on the model pro-
posed in (Jinet al., 1997, J. Mater. Res.14, 3829), uses the level set equation of
Eulerian formulation coupled with a boundary value problem of the Laplace equa-
tion. It allows robust numerical capturing of topological changes such as merging
and formation of pores during the process. An efficient numerical method for the de-
tection of the inaccessible pores is introduced for models in the kinetic limit, where
the front speed is constant. Numerical examples show that this model will accurately
predict not only the residual porosity, but also the precise close-off time, location,
and shape of all pores.c© 2000 Academic Press

1. INTRODUCTION

The chemical vapor infiltration (CVI) process is an important approach to fabricating
ceramic matrix composites (CMCs). Two variations, isothermal CVI (ICVI) and forced
flow-thermal gradient CVI (FCVI), are typically utilized. In CVI a vapor precursor of the
matrix material, such as methyltrichlorosilane (MTS), diffuses through (in ICVI) or is forced
(in FCVI) into a network of reinforcing fibers at elevated temperature. The MTS dissociates
at the fiber surface and deposits silicon carbide (SiC), “growing” the solid fiber and filling
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the interfiber void. As matrix growth progresses, avenues for gas transport become more
tortuous and begin to close off. Infiltration and matrix consolidation eventually cease when
the pores no longer form a percolating network through the composites. Under optimum
processing conditions (at the kinetic limit discussed above), the transport of MTS from the
surroundings is rapid relative to the deposition rate and growth continues at a constant rate
as long as there is a continuous path to the surrounding source of the precursor.

The CVI process is one example of a more general physical phenomena—gas–solid
reactions involving porous solids where porosity of the porous medium diminishes as the
volume of the solid phase increases. During the process, as described above, decreasing
porosity makes it possible to form inaccessible pore space in the course of the reaction, and
more space may become inaccessible to transport from outside of the porous medium as the
reaction proceeds further. In percolation theory, the lowest porosity that permits percolation
of a fluid through the pore space is often referred to as the percolation threshold of the
solid. In this paper we refer to it as residual or final porosity, which is very important as this
determines to a great extent the final microstructure of the composite.

As CVI is used for fabrication of composites of increasing size and complexity, modeling
has been a key element and will be even more important in the development of the CVI
process. Many mathematical models have been developed to describe the structure evolution
and to simulate the growth of the matrix on fibers found in the CVI process. These models
emphasize different aspects of the CVI process: transport properties are computed by means
of a random walk simulation scheme [21], porosity is visualized by three-dimensional x-ray
microtomography [7, 8], effective diffusivities are computed using a Monte Carlo simulation
scheme [20], and other models compute the physical properties such as surface area per unit
volume, gas permeability, or thermal conductivity [14]. Most of these models are explicitly
or implicitly based on the pseudo-steady-state hypothesis [22]—the mass and momentum
transfer is very rapid compared to changes in pore geometry. Stated in another way, the whole
internal surface area of the solid is accessible to the reacting fluid at all porosity levels or
inaccessible pore volume formation does not take place. The reason is, as pointed out in [22],
that a description of the change of the pore structure and the surface area is the most difficult
thing to determine in modeling the CVI process. Some models try to overcome this difficulty.
For example, a network of pores of distributed size and length is used to present porous
medium structure [15]; Starr’s model [18] allows initial fibers to grow and overlap, which
simulates the microstructure more appropriately. All these models involve mathematical
complexity and do not capture the essential characteristics of structure evolution. They are
still far from real-time simulation of the CVI process due to the lack of a framework for
quantifying the structure of interconnected porosity and relating it to measurable processing
parameters such as permeability and densification. We would also like to mention the paper
[3], where a one-dimensional optimization problem in CVI was analyzed.

In [6] we presented a mathematical model for CVI that is based on a coupled system
of a Hamilton–Jacobi (H-J) level set equation and a Dirichlet boundary value problem of
the Laplace equation. The level set method is a successful phenomenological model in
numerically computing front propagation problems that can naturally handle singularities
and topological changes such as breaking and merging [11, 13]. However, in order to use
the level set method one has to provide the front speed, which is nonlocal for the CVI
process. We used a boundary value problem of the Laplace equation as an indicator of
the accessibility of each pore from the outer boundary. More specifically, the sign of the
solution to this Laplace equation is used to determine whether a particular part of the front
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will grow or cease to grow. Using this Laplace equation is also physically natural since its
solution plays the role of concentration or temperature. In the CVI process, the gas diffusion
is much faster than the growth of the fiber, making the diffusion process essentially time-
independent. This leads to the Laplace equation for concentration or temperature.

The objective of this mathematical model is to simulate the developing fiber–matrix mi-
crostructure in two or three dimensions without incorporating kinetic theory or percolation
theory. This is a new approach to this problem. Numerically simulating the process will
monitor the changing of geometry microstructure and porosity.

In this paper, we provide numerical discretizations of this model. In particular, we assume
that the process is in the kinetic limit, where the front speed is constant unless around
inaccessible pores. This limit can be achieved under optimal processing conditions. In such
a case, the front speed does not depend on the specific value of the solution to the Laplace
equation; rather, they only depend on its sign. We introduce a very efficient way to detect
the accessibility of the front. Since only the sign of the Laplace equation is needed, our
accessibility determination does not solve the Laplace equation directly; instead we only
check the sign of its solution. At each time step this algorithm needs merelyO(N)operations
for N grid points, and as the porosity decreases the number of operations also decreases.
This efficient algorithm, coupled with the solution to the Hamilton–Jacobi equation, which
is obtained using the second order scheme developed by Osher and Sethian [11], offers a
fast and robust way to simulate the evolution of the pore structure.

A related but much simpler problem arises in modeling photolithography, which is etching
via some light energy source [13]. In this problem, whether a piece of the etched surface
grows depends on whether it exposes to the energy source. Thus the growth rate depends on
a given directional vector. The CVI process is much more complex since the gas transports
and diffuses around all possible directions.

This paper is organized as follows. In Section 2, we review the model by Jinet al. intro-
duced in [6]. In Section 3 we first present the second order scheme by Osher and Sethian
on the Hamilton–Jacobi equation and then introduce an efficient way for detecting inacces-
sible pores. A large variety of numerical examples are given in Section 4. We conclude in
Section 5.

2. THE MATHEMATICAL MODEL

The qualitative behavior of the CVI process is described in Fig. 1. Consider, for example,
an initial configuration of circular fiber fronts0 that grow in the normal direction with a
prescribed velocityc. The growth of the interface is caused by a chemical reaction with
a mobile, gaseous reactant that diffuses from the outer boundary. As the fronts grow the
neighboring fronts begin to interact and then merge. However, when three or more fronts
interact they form an isolated pore (area denoted byO), which is inaccessible by reactant
from the outer boundary∂Ä. Since the gas reactant cannot penetrate into these inaccessible
pores, fronts surrounding these pores will stop growing. The final configuration is the
domain filled with the fibers except for the isolated pores—the residual porosity that cannot
be eliminated by further processing. For optimizing composite properties it is necessary
to understand the relation between this residual porosity and the initial configuration of
the fibers. This is particularly true for continuous filament composites where weaving and
braiding processes offer a great opportunity to tailor the initial configuration of fibers.
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FIG. 1. Qualitative description of the CVI process. As front0 grows, inaccessible pores (areaO) form whose
boundary ceases to grow.

In [6], a model based on the level set equation of Hamilton–Jacobi type, coupled with a
boundary value problem of the Laplace equation, was introduced for such a process. Here
we review this model.

Let φ(x, t) be the level set function, with zero level set as0t ={x | φ(x, t)= 0}. The
initial choice ofφ is arbitrary. For example, one can chooseφ(x, t = 0)=±d, whered is the
signed distance from pointx to00, the initial fiber fronts. The plus (or minus) sign is chosen
if the pointx is outside (or inside)00—in the gas (solid) phase. The solid and gas phases are
represented byÄ− = {(x, t) | φ(x, t)<0} andÄ+ = {(x, t) | φ(x, t)>0}, respectively.

Now suppose the fibers’ speed in the normal direction isc(x, t), which may be a function
of reactant kinetic (temperature, pressure, reactant concentration, etc.) or depend on local
geometry such as the mean curvature. Then the zero level set ofφ, which solves the following
H-J equation [11],

φt − c(x, t)|∇φ| = 0 , (1)

describes the desired fiber surface propagating before inaccessible pores (areaO) are
formed. However, this equation cannot predict the formation of pores; thus the surface sur-
rounding the pores will continue to grow with normal velocityc and eventually these pores
will disappear just like the merging of two fronts. In order to correctly describe the behavior
of the pores, we augment (1) with another equation satisfied by a concentration variable
(or an order parameter for the pore)u(x, t), defined inÄ+, which solves the following
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boundary value problem of the Laplace equation:

1u = 0 inÄ+(t),

u(x, t) = 1 on∂Ä, (2)

u(x, t) = 0 on0t .

We then couple (1) and (2) by setting

c̃(x, t) =
{

c(x, t) if u > 0,
0 if u = 0 andφ > 0.

(3)

The new level set equation is then

φt − c̃(x, t)|∇φ| = 0 . (4)

By the maximum principle for the boundary value problem of the Laplace equation [4],
the solution of (2) satisfies 0≤ u≤ 1 onÄ+, and the maximum value 1 and the minimum
value 0 are attained only at the boundary∂Ä and0. So before the formation of the pores,
0< u< 1 at all the interior points ofÄ+; thus every point at the front will propagate with
normal velocityc. However, when the pore areaO is formed,u defined inO has zero
boundary condition on the boundary ofO, which is part of0; thus the maximum principle
implies thatu ≡ 0 in O, which stops further shrinking of the pores, while in other parts of
the front the growth speed remainsc.

In summary, the solution of (2)–(4) gives the desired growth as described in Section 2.

Remarks.

1. The speedc(x, t) can be any prescribed one, or any function of, for example,
constant, local mean curvature, or other physical quantities.

2. In this model, just as in any front propagation described by the level set method,0

can be any shape, while earlier models, such as that in [19], require the fibers to be circular.
3. In practiceu may be defined in the whole domainÄ. InÄ−, u will always be set to

zero.
4. If the reactant input is only from part of∂Ä, then we can modify the boundary value

of u from (2) accordingly.
5. The model remains the same in three dimensions, where all the fronts are surfaces.

3. NUMERICAL METHODS

3.1. Numerical Method for the Hamilton–Jacobi Equation

To solve the H-J equation (4), we use the second order scheme introduced by Osher and
Sethian [11]. LetD± denote the finite difference operator

D+xφ ≡ φ(x + h, t)− φ(x, t)
h

, (5)

D−xφ ≡ φ(x, t)− φ(x − h, t)

h
. (6)
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The scheme for (4) is described as

φn+1
i j = φn

i j +1t [max(c̃i j , 0)∇+ +min(c̃i j , 0)∇−], (7)

∇+ = [max(A, 0)2+min(B, 0)2+max(C, 0)2+max(D, 0)2]1/2, (8)

∇− = [max(B, 0)2+min(A, 0)2+max(D, 0)2+max(C, 0)2]1/2, (9)

where

A = D−x
i j +

1x

2
m
(
D−x−x

i j , D+x−x
i j

)
, (10)

B = D+x
i j −

1x

2
m
(
D+x+x

i j , D+x−x
i j

)
, (11)

C = D−y
i j +

1y

2
m
(
D−y−y

i j , D+y−y
i j

)
, (12)

D = D+y
i j −

1y

2
m
(
D+y+y

i j , D+y−y
i j

)
, (13)

wherem is the minmod slope limiter function

m(x, y) =


{

x if |x| ≤ |y|
y if |x| > |y| if xy≥ 0 ;

0 if xy< 0.

3.2. An Efficient Algorithm for Detecting Inaccessible Pores

Solving a boundary value problem of the Laplace equation is complicated, especially for a
complex geometry. If the front speed does not depend on the specific value but only the sign
of u, such as in the kinetic limit, we only need the sign of the Laplace equation, which can
be obtained rather efficiently using the method described below. The key observation is that,
in the solution of the Laplace equation,ui j in Ä+ is positive ifu at one of the neighboring
points has a positive sign. Here we propose a more efficient,O(N), method, whereN is the
total number of grid points. This method defines all grid points in the accessible pore area
Ä+ asu= 1 and other points asu= 0. Then we can simply definẽc(x, t)= u(x, t) ∗ c(x, t).

Let B={(i, j ) | u(i, j )= 1} be the set of points inÄ+ that are accessible from the
boundary∂Ä. Initially it contains only the boundary points where the reactant comes in.
Starting with any points(i1, j1) from B, put its eight nearest neighboring points that belong
to Ä+ but are not already inB (namely those at which 0< u< 1 andφ >0) into B by
defining its value ofu to be 1. Then go to the next neighboring point inÄ+ and repeat the
previous procedure until all points inÄ+ at which 0< u< 1 have been checked.

At each time step, every point atÄ+ with a positiveu value will be moved intoB just
once. Thus this algorithm needs at mostO(N) operations for each time step. In fact, at the
later stage of the search when the residual porosity becomes small, the number of operations
is far less thanN since we only check intoB the points inÄ+−O.

We now list the FORTRAN code for this fast algorithm. We use an indication functionq
for setB, namely,B={(i, j ) | q(i, j )= 2}.

First we include the code for the definition of the boundary points, which is used only at
the first time step.
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KTOTALB=0

DO 120 I=0,N

IF(U(I,0,0).GT.ZERO)THEN

Q(I,0)=2

KTOTALB=KTOTALB+1

X(KTOTALB)=I

Y(KTOTALB)=0

ENDIF

120 CONTINUE

The iterative search algorithm is given by (assume(X(1),Y(1)) is a boundary point):

KTOTAL=KTOTALB

LI=1

125 IL=X(LI)

JL=Y(LI)

DO 130 I=-1,1

DO 130 J=-1,1

IF((I.NE.0.OR.J.NE.0).AND.IL+I.GE.-1.

* AND.IL+I.LE.N+1.AND.JL+J.GE.-1.AND.JL+J.LE.N+1)THEN

IF(Q(IL+I,JL+J).LT.2.AND.U(IL+I,JL+J,0).GT.ZERO)THEN

KTOTAL=KTOTAL+1

X(KTOTAL)=IL+I

Y(KTOTAL)=JL+J

Q(IL+I,JL+J)=2

ENDIF

ENDIF

130 CONTINUE

LI=LI+1

IF(LI.LE.KTOTAL)GO TO 125

From the description of the algorithm, we see that the total logic operation in calculating
u is O(N) at each time step, and this number decreases as the accessible porosityÄ+−O
decreases.

Remarks:

(1) This algorithm checks the eight nearest neighbors for connectivity. In practice one
can omit the check in the diagonal directions. This will speed up the computation at the
cost of slightly lower accuracy.

(2) The process of filling a polygon in computer graphics is a process similar to
detecting the accessible pores. See the flood fill algorithm in [1].

3.3. Calculation of the Porosity

We now discuss how the porosity is calculated numerically. The simplest way is to add
the number of cells whereφ >0 and divide it by the total number of cells. This is a first
order calculation. To obtain a second order result, for each cell, we check the sign ofφ

on the four vertices. If they have the same (positive) sign, this cell will be counted as 1.
If the sign changes, a linear interpolation is used to determine the location of zero ofφ,
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FIG. 2. Porosity calculation using linear interpolation.

FIG. 3. (a) Square distribution and (b) second order convergence.
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and this point is connected with the zero ofφ on another side of the cell. The area of the
corresponding polygon is then computed which gives the approximated porosity in that cell.
An example is illustrated in Fig. 2, where one first finds the zeroes ofφ at E, F, G, H, and
then subtracts the areas of two triangles AEF and CGH from the area of square ABCD to
obtain the porosity in this square.

4. NUMERICAL RESULTS

In this section we present some two-dimensional numerical experiments using the method
presented in Section 3.

The computation is carried out over a 1× 1 square box (except in the hexagonal distri-
bution case, where the region is 1×√3) with periodic boundary condition forφ, and in
both space dimensions 300 grid points are used, with proper time step (1t = 1.25× 10−4)

FIG. 4. Hexagonal distribution.



FIG. 5. (a) Random distribution I: inital porosity= 80%, source reactant comes from four sides of the bound-
ary. (b) Random distribution II: inital porosity= 80%, source reactant comes only from left side of the boundary.
(c) Instantaneous growth rate of porosity.
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FIG. 5—Continued

satisfying the numerical stability condition. We test the model for the following cases of
fiber distribution.

EXAMPLE 1 (Circles initially distributed on the square lattice). Monosized fibers are
uniformly placed to form a square mesh. In this case the exact solution is known, which
yields a final porosity= 1− π

4
.= 21.46%. Our numerical experiment with the initial radius

0.04, as shown in Fig. 3a, yields the final porosity of 21.49%. This agrees with the exact
solution very well.

To test the numerical accuracy of the scheme presented in Section 3.1 for the Hamilton–
Jacobi equation in our application, we refine the mesh from the 100× 100 discretization to
the 500× 500 one and calculate the error, defined as the difference ofφ between every two
consecutive runs during this refinement, inL∞. In Fig. 3b the error versus the mesh size is
plotted, which shows the second order accuracy.
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TABLE I

Final Porosity When the Reactant Comes from Four Sides of the Boundary

Initial porosity 80% 70% 60% 50%
Average final porosity 25.29% 26.88% 27.20% 27.01%

EXAMPLE 2 (Circles initially distributed on a hexagonal lattice). Monosized fibers are
uniformly placed to form a hexagonal mesh in a rectangle with height

√
3 and width 1. In

this case the exact final porosity is also known, which equals 1− π

2
√

3

.= 9.31%. In Fig. 4,
we show the numerical solution that begins with circles of radius 0.1. The final numerical
porosity for this example is 11.24%. The slight loss of accuracy, compared with the first
example, is due to the grid effect since in the first example the lattice is aligned with the
spatial grid while in this one it is not. We then refine the mesh by a factor of 2 and obtain
the final porosity 10.35%.

FIG. 6. Ellipses with random rotation.
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TABLE II

Final Porosity When the Reactant Comes from the Left Boundary

Initial porosity 80% 70% 60% 50%
Average final porosity 33.34% 31.33% 30.00% 29.71%

EXAMPLE 3 (Circles of the same size randomly distributed initially). In Fig. 5a, we
show the numerical simulation beginning with random initial distribution (no overlapping)
of circles, with initial porosity of 80%. The gas reactant comes from all four sides of the
boundary. In Fig. 5b we do the same simulation but assume the input boundary only at the
left. To obtain an estimate of the relation between the initial porosity and the final porosity,
we conduct experiments with random distributions of nonoverlapping circles of the same
size with initial porosity 80, 70, 60, and 50%, respectively. For each initial porosity, we
run ten different initial distributions and take the averaged final porosity. The results on the
final porosity are given in Tables I and II.

In Fig. 5c we also plot the porosity versus time for both 160 and 320 circles in the case
where gas is allowed from all four sides of the boundary. In both cases, one can see that the
porosity decreases faster at the early stage and much slower toward the later stage.

FIG. 7. The effect of the number of circles on instantaneous growth rate of porosity.
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EXAMPLE 4 (Initial fibers of ellipse shape). The initial and equilibrium solutions are
shown in Fig. 6. The example is to show that the model is suitable for fibers of any shape.

EXAMPLE 5. In this experiment, we are interested in how the number of circles (with
fixed initial porosity) would affect the final porosity and computational time. We vary the
radii of the initial circles, and consequently the number of the initial circles changes in
order to have the same initial porosity. The radii we chose areri = 0.102

i ; thus the corre-
sponding numbers of circles areNi = 10× i 2, wherei = 1, 2, . . .6. The initial porosity is
(1− Ni ×π × r 2

i )× 100%
.= 67.31% in all six cases. Initially, the circles are distributed

randomly in a square region of unit size. We use a 300× 300 uniform grid, and the time
step is 2.5× 10−4. The computation stops when all pores are not inaccessible from any
side of the boundary. We run each initial radius five times and find out the average for final
porosity, total iterative steps, and CPU time. In Figs. 7 and 8, the porosity versus time,
the number of iteration steps versus the initial number of circles, and the CPU time versus

FIG. 8. The effect of the number of circles on final porosity, total iterative steps, and CPU time.
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the initial number of circles are depictd. The experiment suggests that the fewer the initial
number of circles is the smaller the final porosity is. This is not surprising—just imagine
that if initially there is one circle the final porosity would be zero. However, one has to
be concerned about the cost. As one increases the initial number of circles one reduces
the number of iterations and the CPU time. Thus the optimal choice is the balance of final
porosity and the production time, which is exactly the experience from the experiment.

5. CONCLUSION

In this paper we provide a robust numerical method for the simulation of the CVI process
in composite fabrication under the kinetic limit, based on the model introduced in [6].
Our method, using the level set equation coupled with a boundary value problem of the
Laplace equation, is an Eulerian formulation which allows robust treatment for topological
changes such as merging and formation of pores without artificially tracking them. In the
case of constant growth speed, we introduce anO(N) algorithm to replace the Laplace
solver, which allows us to identify the inaccessible pores in a very efficient way. Extensive
numerical results show that the model precisely describes the desired growth property. As
a result, it not only predicts the residual porosity, but also the precise locations and shapes
for all pores.

In more realistic simulations the front speed may depend on the specific value or the
gradient of the solution of the Laplace equation. In such a case we need to solve the
Laplace equation in a complex geometry using some fast solver [9, 10, 12]. We leave this
for a future paper. We will also couple the model with more physical properties, such as
chemical reaction taking place at the interface and gas transport through the network, and
apply them to many other physical problems where porosity plays a role.
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